Scaling limits of a heavy tailed Markov renewal process

نویسنده

  • Julien Sohier
چکیده

In this paper we consider heavy tailed Markov renewal processes and we prove that, suitably renormalised, they converge in law towards the α-stable regenerative set. We then apply these results to the strip wetting model which is a random walk S constrained above a wall and rewarded or penalized when it hits the strip [0,∞) × [0, a] where a is a given positive number. The convergence result that we establish allows to characterize the scaling limit of this process at criticality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Scaling Limits of Arrival Processes with Long-Range Dependence

Various classes of arrival processes in telecommunication traffic modeling based on heavy-tailed interarrival time distributions exhibit long-range dependence. This includes arrival rate processes of Anick-MitraSondhi (AMS) type where the rate process is an on/off-process with heavy-tailed on-period distribution and/or off-period distribution, as well as generalized Kosten type models (infinite...

متن کامل

Extended Geometric Processes: Semiparametric Estimation and Application to ReliabilityImperfect repair, Markov renewal equation, replacement policy

Lam (2007) introduces a generalization of renewal processes named Geometric processes, where inter-arrival times are independent and identically distributed up to a multiplicative scale parameter, in a geometric fashion. We here envision a more general scaling, not necessar- ily geometric. The corresponding counting process is named Extended Geometric Process (EGP). Semiparametric estimates are...

متن کامل

ar X iv : 0 80 9 . 16 12 v 1 [ m at h . PR ] 9 S ep 2 00 8 CORRELATED CONTINUOUS TIME RANDOM WALKS

Continuous time random walks impose a random waiting time before each particle jump. Scaling limits of heavy tailed continuous time random walks are governed by fractional evolution equations. Space-fractional derivatives describe heavy tailed jumps, and the time-fractional version codes heavy tailed waiting times. This paper develops scaling limits and governing equations in the case of correl...

متن کامل

Correlated continuous time random walks

Continuous time random walks impose a random waiting time before each particle jump. Scaling limits of heavy-tailed continuous time random walks are governed by fractional evolution equations. Space-fractional derivatives describe heavy-tailed jumps, and the time-fractional version codes heavy-tailedwaiting times. This paper develops scaling limits and governing equations in the case of correla...

متن کامل

ANALYSIS OF FINITE BUFFER RENEWAL INPUT QUEUE WITH BALKING AND MARKOVIAN SERVICE PROCESS

This paper presents the analysis of a renewal input  finite buffer queue wherein the customers can decide either to  join the queue with a probability or balk. The service process is Markovian service process ($MSP$) governed  by an underlying $m$-state Markov chain. Employing the supplementary  variable and imbedded Markov chain techniques,   the steady-state system length distributions at pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017